Luc Brogat-Motte

I am a postdoctoral researcher under the supervision of Riccardo Bonalli (L2S, CentraleSupélec), and Alessandro Rudi (SIERRA team, INRIA Paris). I study the estimation of controlled stochastic differential equations.

Previously, I completed my PhD at Télécom Paris, where I studied kernel methods and statistical learning theory under the supervision of Florence d'Alché-Buc (Télécom Paris) and Juho Rousu (Aalto University).

You can reach me at: luc [dot] brogat [dot] motte [at] gmail [dot] com.

CV  /  Scholar  /  Github

profile photo

Publications and Preprints

Learning Controlled Stochastic Differential Equations
Luc Brogat-Motte, Riccardo Bonalli, Alessandro Rudi
Preprint
pdf
Sketch In, Sketch Out: Accelerating both Learning and Inference for Structured Prediction with Kernels
Tamim El Ahmad, Luc Brogat-Motte, Pierre Laforgue, Florence d’Alché-Buc
International Conference on Artificial Intelligence and Statistics (AISTATS), 2024
pdf
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
Luc Brogat-Motte, Rémi Flamary, Céline Brouard, Juho Rousu, Florence d’Alché-Buc
International Conference on Machine Learning (ICML), 2022
pdf / github 1 / github 2
Vector-Valued Least-Squares Regression under Output Regularity Assumptions
Luc Brogat-Motte, Alessandro Rudi, Céline Brouard, Juho Rousu, Florence d'Alché-Buc
Journal of Machine Learning Research (JMLR), 2022
pdf
Duality in RKHSs with infinite dimensional outputs: Application to robust losses
Pierre Laforgue, Alex Lambert, Luc Brogat-Motte, Florence d’Alché-Buc
International Conference on Machine Learning (ICML), 2020
pdf

PhD thesis

Structured Prediction with Output Regularization : Improving Statistical and Computational Efficiency
Luc Brogat-Motte
2023
manuscript

Thanks, Jon Barron, for the template.