Luc Brogat-Motte
I am a postdoctoral researcher under the supervision of Riccardo Bonalli (L2S,
CentraleSupélec), and Alessandro Rudi (SIERRA team, INRIA Paris). I study the estimation of
controlled stochastic differential equations.
Previously, I completed my PhD at Télécom Paris, where I studied kernel methods and
statistical learning theory under the supervision of Florence d'Alché-Buc (Télécom Paris)
and Juho Rousu (Aalto University).
You can reach me at: luc [dot] brogat [dot] motte [at] gmail [dot] com.
CV /
Scholar
/
Github
|
|
Publications and Preprints
|
Sketch In, Sketch Out: Accelerating both Learning and Inference for Structured Prediction with Kernels
Tamim El Ahmad,
Luc Brogat-Motte,
Pierre Laforgue,
Florence d’Alché-Buc
International Conference on Artificial Intelligence and Statistics (AISTATS), 2024
pdf
|
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
Luc Brogat-Motte,
Rémi Flamary,
Céline Brouard,
Juho Rousu,
Florence d’Alché-Buc
International Conference on Machine Learning (ICML), 2022
pdf
/
github 1
/
github
2
|
Vector-Valued Least-Squares Regression under Output Regularity Assumptions
Luc Brogat-Motte,
Alessandro Rudi,
Céline Brouard,
Juho Rousu,
Florence d'Alché-Buc
Journal of Machine Learning Research (JMLR), 2022
pdf
|
Duality in RKHSs with infinite dimensional outputs: Application to robust losses
Pierre Laforgue,
Alex Lambert,
Luc Brogat-Motte,
Florence d’Alché-Buc
International Conference on Machine Learning (ICML), 2020
pdf
|
|